2013年12月7日土曜日



△ABC において,BC の中点をMとすると
AB^2+AC^2= 2(AM^2+BM^2)
が成り立ち、中線定理(パップスの定理)といいます。

Proof[edit]

Proof of Apollonius' theorem
The theorem can be proved as a special case of Stewart's theorem, or can be proved using vectors (see parallelogram law). The following is an independent proof using the law of cosines.[1]
Let the triangle have sides abc with a median d drawn to side a. Let m be the length of the segments of a formed by the median, so m is half of a. Let the angles formed between a and d be θ and θ′ where θ includes b and θ′ includes c. Then θ′ is the supplement of θ and cos θ′ = −cos θ. The law of cosines for θ and θ′ states

\begin{align}
b^2 &= m^2 + d^2 - 2dm\cos\theta \\
c^2 &= m^2 + d^2 - 2dm\cos\theta' \\
&= m^2 + d^2 + 2dm\cos\theta.\, \end{align}
Add these equations to obtain
b^2 + c^2 = 2m^2 + 2d^2\,

0 件のコメント:

コメントを投稿